• corsicanguppy@lemmy.ca
      link
      fedilink
      arrow-up
      2
      ·
      5 months ago

      Yet another problem that actually updating your shit - which is trivially easy on enterprise Linux - would fix.

      It’s part of the 95% of problems solved by actually updating your enterprise Linux host.

    • Possibly linux@lemmy.zip
      link
      fedilink
      English
      arrow-up
      1
      ·
      5 months ago

      The problem is bad programmers. You can write good C code but it takes more effort and security checking. You also can write vulnerable and sloppy Rust code.

    • Venia Silente@lemm.ee
      link
      fedilink
      English
      arrow-up
      0
      ·
      5 months ago

      Oh, we heard, Rust is the greatest invention since sliced bread. We heard it already. Like 65534 times.

      • urska@lemmy.ca
        link
        fedilink
        arrow-up
        1
        ·
        5 months ago

        Aviation, Health, Space and Car industry have only 3 certified languages that they use. Ada, C and C++. Ada is dying because there are way less young engineers who want to invest their future learning it. Then there is C and C++ but they dont offer memory safety and its really hard to master and its really hard and long (thats what she said) to certify the code when being audited for safety by a tier company.

        Rust solves by default (no need to review) like 2/3 of the standard requirements those industries have and are that found in C and C++. Rust will soon be approved in this group by the car industry.

        Im not a rust fan, but I have 3 things to say about rust.

        • Its fun to program like C++ having the peace of mind knowing the compiler is there helping.
        • You dont feel like youre defusing a bomb like when writing C.
        • Even though its a fun language to write, its also really hard to master, itd say 2 years to be really proficient with it. There is just so much knowledge.
          • urska@lemmy.ca
            link
            fedilink
            arrow-up
            2
            ·
            edit-2
            5 months ago

            These industries hire third parties to review c and c++ line per line to make sure it’s memory safe. Rust by default forces you to write memory safe code, otherwise it won’t even compile. The rust compiler tells where is the problem and what it expects. No only for basic Type errors but also for concurrent code.

              • urska@lemmy.ca
                link
                fedilink
                arrow-up
                2
                ·
                5 months ago

                its the way the language was built. Im not sure its possible without breaking C/C++ which have like 35 years + in the making. Also these concepts are have little to do with programing and more architectural designs. The designers are real engineers working on difficult concepts. All big brains tbh

        • corsicanguppy@lemmy.ca
          link
          fedilink
          arrow-up
          0
          arrow-down
          1
          ·
          5 months ago
          • You dont feel like youre defusing a bomb like when writing C.

          Whoa, Skippy. It’s not saving the world, it’s just coding properly.

          • urska@lemmy.ca
            link
            fedilink
            arrow-up
            1
            ·
            5 months ago

            Well no, those companies deal with really important subjects. Airplanes, car safety, chemotherapy machines, missiles, etc. Have a good day

      • The Doctor@beehaw.org
        link
        fedilink
        English
        arrow-up
        0
        ·
        5 months ago

        I wonder how many folks are just refusing to use Rust to spite the Rust Evangelism Strike Team.

            • delirious_owl@discuss.online
              link
              fedilink
              arrow-up
              1
              ·
              5 months ago

              It doesn’t verify downloads are authentic. Its an issue with almost all programming dependency managers besides mature ones like Java’s Maven.

              Python has been working with Facebook to fix this in pip for like a decade.

              But obviously it shows that rust isn’t so concerned about security.

              • uhN0id@programming.dev
                link
                fedilink
                arrow-up
                2
                ·
                5 months ago

                Ah interesting. Thank you, you’re giving me something to read about that I never considered for crates. I guess I just assumed because of the scrutiny Rust was built with and continues to go through that it would also apply to verifying crates. I have definitely heard about it with NPM so it should have been obvious that it might not be any different for crates. Thanks again!

    • the_doktor@lemmy.zip
      link
      fedilink
      arrow-up
      0
      ·
      5 months ago

      Any software can have security issues, including ones written in rust. Just because C/C++ allows one to shoot oneself in the foot doesn’t mean it’s something that’s commonly allowed by anyone with any skill, it’s just a bug like anything else. I swear, people advocating rust believe that it’s something intrinsic in C/C++ that allows such a thing regardless of what a developer does, and it’s getting tiresome.

      • ProgrammingSocks@pawb.social
        link
        fedilink
        arrow-up
        1
        ·
        5 months ago

        Of course a good developer can avoid these problems for the most part. The point is that we want the bad developers to be forced to do things a safe way by default.

        • pathief@lemmy.world
          link
          fedilink
          arrow-up
          2
          ·
          5 months ago

          Even good developers make mistakes. It’s really nice to catch these mistakes at compile time.

    • DacoTaco@lemmy.world
      link
      fedilink
      arrow-up
      0
      ·
      5 months ago

      Serious question, how would using rust avoid this? Rust still has reference types in the background, right? Still has a way to put stuff on the heap too? Those are the only 2 requirements for reusing memory bugs

      • sleep_deprived@lemmy.world
        link
        fedilink
        arrow-up
        0
        ·
        5 months ago

        This is a use-after-free, which should be impossible in safe Rust due to the borrow checker. The only way for this to happen would be incorrect unsafe code (still possible, but dramatically reduced code surface to worry about) or a compiler bug. To allocate heap space in safe Rust, you have to use types provided by the language like Box, Rc, Vec, etc. To free that space (in Rust terminology, dropping it by using drop() or letting it go out of scope) you must be the owner of it and there may be current borrows (i.e. no references may exist). Once the variable is droped, the variable is dead so accessing it is a compiler error, and the compiler/std handles freeing the memory.

        There’s some extra semantics to some of that but that’s pretty much it. These kind of memory bugs are basically Rust’s raison d’etre - it’s been carefully designed to make most memory bugs impossible without using unsafe. If you’d like more information I’d be happy to provide!

        • DacoTaco@lemmy.world
          link
          fedilink
          arrow-up
          0
          ·
          5 months ago

          Thanks for the response. Ive heard of rust’s compiler being very smart and checking a ton of stuff. Its good thing it does, but i feel like there are things that can cause this issues rust cant catch. Cant put my finger on it.
          What would rust do if you have a class A create something on the heap, and it passes this variable ( by ref ? ) to class B, which saves the value into a private variable in class B. Class A gets out of scope, and would be cleaned up. What it put on the heap would be cleaned up, but class B still has a reference(?) to the value on the heap, no? How would rust handle such a case?

          • mhague@lemmy.world
            link
            fedilink
            arrow-up
            1
            ·
            edit-2
            5 months ago

            You use lifetimes to annotate parameters and return values in order to tell the compiler about how long things must last for your function to be valid. You can link a specific input with the output, or explicitly separate them. If you don’t give lifetimes the language uses some basic rules to do it for you. If it can’t, eg it’s ambiguous, then it’s a compile error and you need to do it manually.

            It’s one of the harder concepts of rust to explain succinctly. But imagine you had a function that took strA and strB, used strB to find a subsection of strA, and then return a slice of strA. That slice is tied to strA. You would use 'a annotation for strA and the return value, and 'b for strB.

            Rust compiler will detect the lifetime being shorter than expected.


            Also, ownership semantics. Think c++ move semantics. Only one person is left with a good value, the previous owners just have garbage data they can’t use anymore. If you created a thing on the heap and then gave it away, you wouldn’t have it anymore to free at the end. If you want to have “multiple owners” then you need ref counting and such, which also stops this problem of premature freeing.


            Edit: one more thing: reference rules. You can have many read-only references to a thing, or one mutable reference. Unless you’re doing crazy things, the compiler simply won’t let you have references to a thing, and then via one of those references free that thing, thereby invalidating the other references.

            • DacoTaco@lemmy.world
              link
              fedilink
              arrow-up
              1
              ·
              edit-2
              5 months ago

              Thats interresting, thanks! Stuff for me to look into!
              I also think halfway through the conversation i might have given the impression i was talking about pointers, while it was not my intention to do so. That said, the readonly/mutable reference thing is very interresting!
              Ill look into what rust does/has that is like the following psuedocode :

              DataBaseUser variable1 = GetDataBaseUser(20);
              userService.Users.Add(variable1);
              variable1 = null; // or free?
              [end of function scope here, reference to heap now in list ]

              • mhague@lemmy.world
                link
                fedilink
                arrow-up
                1
                ·
                edit-2
                5 months ago

                No problem. I’m no guru and I’m currently on Zig but I think learning some Rust is a really fast way to hone skills that are implied by other languages.

          • ProgrammingSocks@pawb.social
            link
            fedilink
            arrow-up
            0
            ·
            edit-2
            5 months ago

            Rust simply doesn’t allow you to have references to data that goes out of scope (unless previously mentioned hoops are jumped through such as an explicitly declared unsafe block). It’s checked at compile time. You will never be able to compile the program.

            Rust isn’t C. Rust isn’t C++. The memory-safe-ness of it is also not magic, it’s a series of checks in the compiler.

            • DacoTaco@lemmy.world
              link
              fedilink
              arrow-up
              1
              ·
              5 months ago

              That sounds odd. That also means that a mapper, command, service,… can never return a class object or entity. Most of the programming world is based on oop o.O
              Keep in mind im not talking about the usage of pointers, but reference typed variables.

              • ProgrammingSocks@pawb.social
                link
                fedilink
                arrow-up
                1
                ·
                edit-2
                5 months ago

                Oh sure, I’m still learning so I thought you meant references as in pointers like in C++. But also, Rust isn’t a strictly object oriented language either. It shares a lot of similar features, but they aren’t all the typical way you’d do things in an OOP language. You should check out the chapter of the Rust book for ownership.