• Elderos@sh.itjust.works
    link
    fedilink
    arrow-up
    76
    ·
    10 months ago

    In some countries we’re taught to treat implicit multiplications as a block, as if it was surrounded by parenthesis. Not sure what exactly this convention is called, but afaic this shit was never ambiguous here. It is a convention thing, there is no right or wrong as the convention needs to be given first. It is like arguing the spelling of color vs colour.

    • Zagorath@aussie.zone
      link
      fedilink
      arrow-up
      58
      ·
      10 months ago

      This is exactly right. It’s not a law of maths in the way that 1+1=2 is a law. It’s a convention of notation.

      The vast majority of the time, mathematicians use implicit multiplication (aka multiplication indicated by juxtaposition) at a higher priority than division. This makes sense when you consider something like 1/2x. It’s an extremely common thing to want to write, and it would be a pain in the arse to have to write brackets there every single time. So 1/2x is universally interpreted as 1/(2x), and not (1/2)x, which would be x/2.

      The same logic is what’s used here when people arrive at an answer of 1.

      If you were to survey a bunch of mathematicians—and I mean people doing academic research in maths, not primary school teachers—you would find the vast majority of them would get to 1. However, you would first have to give a way to do that survey such that they don’t realise the reason they’re being surveyed, because if they realise it’s over a question like this they’ll probably end up saying “it’s deliberately ambiguous in an attempt to start arguments”.

        • Zagorath@aussie.zone
          link
          fedilink
          English
          arrow-up
          5
          ·
          edit-2
          10 months ago

          So are you suggesting that Richard Feynman didn’t “deal with maths a lot”, then? Because there definitely exist examples where he worked within the limitations of the medium he was writing in (namely: writing in places where using bar fractions was not an option) and used juxtaposition for multiplication bound more tightly than division.

          Here’s another example, from an advanced mathematics textbook:

          Both show the use of juxtaposition taking precedence over division.

          I should note that these screenshots are both taken from this video where you can see them with greater context and discussion on the subject.

          • custard_swollower@lemmy.world
            link
            fedilink
            arrow-up
            11
            ·
            10 months ago

            Mind you, Feynmann clearly states this is a fraction, and denotes it with “/” likely to make sure you treat it as a fraction.

            • barsoap@lemm.ee
              link
              fedilink
              arrow-up
              10
              ·
              10 months ago

              Yep with pen and paper you always write fractions as actual fractions to not confuse yourself, never a division in sight, while with papers you have a page limit to observe. Length of the bars disambiguates precedence which is important because division is not associative; a/(b/c) /= (a/b)/c. “calculate from left to right” type of rules are awkward because they prevent you from arranging stuff freely for readability. None of what he writes there has more than one division in it, chances are that if you see two divisions anywhere in his work he’s using fractional notation.

              Multiplication by juxtaposition not binding tightest is something I have only ever heard from Americans citing strange abbreviations as if they were mathematical laws. We were never taught any such procedural stuff in school: If you understand the underlying laws you know what you can do with an expression and what not, it’s the difference between teaching calculation and teaching algebra.

      • gordon@lemmy.world
        link
        fedilink
        English
        arrow-up
        4
        ·
        10 months ago

        So 1/2x is universally interpreted as 1/(2x), and not (1/2)x, which would be x/2.

        Sorry but both my phone calculator and TI-84 calculate 1/2X to be the same thing as X/2. It’s simply evaluating the equation left to right since multiplication and division have equal priorities.

        X = 5

        Y = 1/2X => (1/2) * X => X/2

        Y = 2.5

        If you want to see Y = 0.1 you must explicitly add parentheses around the 2X.

        Before this thread I have never heard of implicit operations having higher priority than explicit operations, which honestly sounds like 100% bogus anyway.

        You are saying that an implied operation has higher priority than one which I am defining as part of the equation with an operator? Bogus. I don’t buy it. Seriously when was this decided?

        I am no mathematics expert, but I have taken up to calc 2 and differential equations and never heard this “rule” before.

        • Incandemon@lemmy.ca
          link
          fedilink
          arrow-up
          2
          ·
          10 months ago

          I can say that this is a common thing in engineering. Pretty much everyone I know would treat 1/2x as 1/(2x).

          Which does make it a pain when punched into calculators to remember the way we write it is not necessarily the right way to enter it. So when put into matlab or calculators or what have you the number of brackets can become ridiculous.

          • mcteazy@sh.itjust.works
            link
            fedilink
            arrow-up
            2
            ·
            10 months ago

            I’m an engineer. Writing by hand I would always use a fraction. If I had to write this in an email or something (quickly and informally) either the context would have to be there for someone to know which one I meant or I would use brackets. I certainly wouldn’t just wrote 1/2x and expect you to know which one I meant with no additional context or brackets

      • Tlaloc_Temporal@lemmy.ca
        link
        fedilink
        arrow-up
        15
        ·
        10 months ago

        BEDMAS: Bracket - Exponent - Divide - Multiply - Add - Subtract

        PEMDAS: Parenthesis - Exponent - Multiply - Divide - Add - Subtract

        Firstly, don’t forget exponents come before multiply/divide. More importantly, neither defines wether implied multiplication is a multiply/divide operation or a bracketed operation.

        • And009@reddthat.com
          link
          fedilink
          arrow-up
          7
          ·
          edit-2
          10 months ago

          Multiplication VS division doesn’t matter just like order of addition and subtraction doesn’t matter… You can do either and get same results.

          Edit : the order matters as proven below, hence is important

        • Squirrel@thelemmy.club
          link
          fedilink
          English
          arrow-up
          2
          ·
          10 months ago

          I was taught that division is just inverse multiplication, and to be treated as such when it came to the order of operations (i.e. they are treated as the same type of operation). Ditto with addition and subtraction.

      • derphurr@lemmy.world
        link
        fedilink
        arrow-up
        13
        ·
        10 months ago

        No there is no clear right answer because it is ambiguous. You would never seen it written that way.

        Does it mean A÷[(B)©] or A÷B*C

          • derphurr@lemmy.world
            link
            fedilink
            arrow-up
            1
            ·
            edit-2
            10 months ago

            No. It’s ambiguous. In a math book or written by anyone that actually uses math, you don’t have a “%”

            You group stuff below the line, and you use parens and brackets to group things like (a + b) and (x)(y) so that it is not ambiguous.

            2/xy would be almost always interpreted differently than 2/x(x+y) which is ambiguous and could mean (2/x)(x+y) or 2/[(x)(x+y)]